
Issues with FLIRT aware malware

John McMaster

January 12, 2011

Abstract

Hex-Ray’s Interactive Disassembler Pro (IDA) relies
on the Fast Library Recognition Technology (FLIRT)
algorithm to perform function recognition. However,
FLIRT has become dated and is vulnerable to attack
by malicious software (malware), copy protected soft-
ware, or other reverse engineering hardened software.
By attacking various parts of the signature, it is pos-
sible to make custom malicious code appear as if it is
stock library code. As certain C runtime (CRT) en-
vironment functions are statically compiled into pro-
grams and have their signatures automatically loaded
as well, it should be possible to turn this on the an-
alyst to hinder analysis.

1 Background

Analyzing malicious software and other binaries is
very time consuming. In order to speed up manual
analysis, analysts rely on heuristic based automated
analysis. In particular, it is very beneficial to rec-
ognize stock library functions since their purpose is
already known. One such algorithm to achieve this
goal is to use the FLIRT algorithm. While signature
collisions are undesirable during creation and best
avoided, the focus of the paper will be on how to
intentionally create collisions against FLIRT signa-
tures. it will be shown FLIRT is weak against colli-
sions and can be turned against the analyst. Instead
of saving the analyst time by eliminating monotonous
work, a bad signature can create a false sense of se-
curity and severely hinder analysis.

2 Previous work

Several groups have worked with alternative func-
tion recognition algorithms. This may indicate these
groups do not feel FLIRT is adequate for many appli-
cations, especially in malware where this research is
typically seen. No public statements have been noted
about the weaknesses in FLIRT. However, I did re-
ceive in private communications an acknowledgment

that FLIRT may be weak.

3 FLIRT

Hex-Rays’ Interactive Disassembler (IDA) Pro is a
popular binary analysis program self-described as a
...hosted multi-processor disassembler and debugger
that offers so many features it is hard to describe
them all. [4] FLIRT is a function recognition algo-
rithm designed to be used with IDA with the goal
[t]o assist IDA users we (Hex-Rays) attempted to cre-
ate an algorithm to recognize the standard library
functions. [3] FLIRT function signatures are made
through the FLAIR toolkit. [2] One of their goals is
we try to avoid false positives completely. [3] FLIRT
signatures are distributed in a proprietary binary .sig
format. However, an open source equivalent imple-
mentation of FLAIR exists in uvudec that allows the
format to be studied. [5]

To make a .sig file, an object file is run through
an object to .pat conversion program such as pelf in
FLAIR or uvobj2pat in uvudec. The .pat file is hu-
man readable and creates a signature for every mod-
ule found in the input file. A module is the smallest
collection of functions that are to be found together.
For example, if a .a file is given, a module is the in-
dividual object files within the .a file. Example .pat
line:

D9EDD9442404D9E5DFE0D9C09E7219D9
E1D81D DFE09E7209D805
00 0000 002F :0000 l o g 1 p f :0000@

l o g 1 p f D9F1C3D9F9C37AE5DDD9DDD9C3

Each one of these modules has the following at-
tributes in given order:

• leading thirty-two bytes represented in upper-
case hexadecimal

• relocation bytes represented as “..”

• number of bytes included in the CRC16

• CRC16 of up to two hundred fifty-six bytes fol-
lowing the first thirty-two that are relocation free

1

5 FLOW ANALYSIS AND OTHER CONSIDERATIONS 2

Figure 1: Visual Studio C Runtime environment
(CRT) signatures being automatically loaded

• total length of the module

• public names in the module, prefixed with “:”,
“@” indicates a local symbol

• offset and name of the first relocation for each
symbol prefixed with ˆ

• Tailing bytes that were not included in either the
leading thirty-two or the CRC16

Next, the .pat file is translated into a .sig file.1 The
following occurs during conversion:

• All tailing bytes are discarded

• Only the first relocation name is recorded

• If two signatures are identical, the collision must
be resolved, often by not including the signature

Finally, we note that IDA automatically loads cer-
tain .sig files. The .sig directory contains a file called
vc32rtf.sig that is automatically loaded by IDA, as
seen in the log window. Other .sig files can be loaded
as well, but a practical attack should probably focus
on those automatically loaded.

4 CCITT CRC16

Regardless of cryptographic strength, a 16 bit hash
is extremely small by today’s cryptographic stan-
dards notwithstanding that [b]oth CRCs and cryp-
tographic hash functions by themselves do not pro-
tect against intentional modification of data. [1] Even
if CRC16 was cryptographically secure, its combined
short length and ease of computation makes it an easy
target for brute force collision attacks.

1The exact details of the .sig format will not be covered as
they are irrelevant to this discussion and can be found in the
references

5 Flow analysis and other con-
siderations

Since FLIRT only recognizes plausibly compiler gen-
erated functions, careful editing is required to prevent
issues in the problems window. First, multiple disas-
sembly paths raises a problem, so jumps must not
interleave instructions. For example, if a jump from
the prefix bytes intersects the payload, align it by in-
serting nop’s, rearranging instructions, etc. Second,
one must be careful not to truncate instructions, es-
pecially from a hard cutoff after the first thirty-two
leading bytes. In the crc16 function example, the last
byte is part of a stack pointer manipulation (1e: 8b
45 08 mov 0x8(%ebp),%eax). Substituting 0x08 with
0x90 makes the stack pointer analysis incoherent and
IDA will refuse to create a function. This also in-
dicates stack pointer analysis must remain valid, in-
cluding function cleanup by restoring the stack and
performing an actual return. Finally, IDA has some
knowledge of Linux system calls. An initial collision
attack attempted to use exit to avoid stack cleanup,
but IDA detected the no-return style function call
and resulted in incoherent function analysis.

Although subsequent relocations are ignored, they
still must be cared for, especially if we are attacking
the CRC16 block. In particular, a relative function
call seems to still count as a relocatable even though
the operand is fixed. Thus, relative function calls will
truncate the CRC16 despite being constant data.

Finally, it should be noted that in general the en-
tire library will be available as an attack surface, not
a single function. Thus, in all likelihood, there will
exist a number of possibilities to inject code and a
single attack vector is not critical. As an example,
vc32rtf.sig contains tens of thousands of signatures,
leading to a very large attack surface. It is unknown,
however, the effect of using two distinct signatures
that resolve to the same function name and only
unique function names may be viable. The attack
surface is still very large and should not be an issue.

6 Forging signatures

6.1 Forging by CRC16

Consider the crc16 function sampled from uvudec.2

It is a relatively long function that makes no ex-
ternal function calls as would get grouped into the
crc16 block in a FLIRT signature. Thus it is a good

2See appendix for source code and disassembly dump of
both the original crc16 function and the forgery.

7 IMPACT 3

example candidate for this style attack. The origi-
nal function was compiled with gcc and ran through
uvobj2pat:

5589E583EC1066C745FEFFFF837D0C00
75080FB745FEF7D0EB7FC645FB008B45
7B BF3F 009B :0000 c r c16

In order to create a function that looks identical,
but performs differently, we have these fundamental
constraints: -Must match the CRC16 -Must match
the same overall function length -Must have the same
relocations (none in this case) We gain the flexibility
to forge the CRC16 with a statement like the follow-
ing:

080484DF: jmp shor t loc 80484E3
080484E1 : db 27h , 78h
080484E3 : . . .

This jump allocates 16 bits of freedom for a CRC16
collision without effecting program execution. This
is better than, for example, creating a conditional
branch on those bytes since IDA will disassemble the
collision bytes and possibly result in invalid disassem-
bly. It may be possible to forge the CRC16 with fewer
bits, but this guarantees us a collision exists.

The relocation limitation may at first sound daunt-
ing since function calls cannot be made. However, one
easy way around this is to make syscalls directly as
they do not depend on loaded code locations. An-
other way might be to use retc style calls, although
IDA might not like the flow control and this would
be much more difficult.

Linking one program with the actual crc16 function
(normal) and one with the collision (forged), both
execute with different results:

[mcmaster@gespenst r e s ea r ch] $. / normal
crc16 : 0x1F09
[mcmaster@gespenst r e s ea r ch] $. / fo rged
h e l l o
crc16 : 0x0006

Next, it will be shown IDA does not differenti-
ate between the two programs or, more precisely,
the crc16 function signatures. As library recognition
is irrelevant for non-stripped executables, they are
stripped of symbols. Then normal is loaded into IDA
and the FLIRT signature for crc16 is loaded. The
crc16 function is correctly discovered and indicated
to be a library function as shown in light blue at the
top of the window in figure 2.

Now, loading the forged executable in, a crc16
function is also recognized, but this time mistakenly:
Thus, the attack has succeeded and the function is
now mistakenly labeled.

Figure 2: Good signature match

Figure 3: Forged signature match

6.2 Forging by function length

Since the remainder of the function is only based on
length, it is trivial to forge the remainder as long
as the assembly is reasonable looking as described
above. The only main restriction is that the forged
function have the same number of bytes as the orig-
inal. If there is a function call to be ignored, it is
not permissible to unconditionally jump over the call
since it would then not be considered a relocation and
the signature would fail. However, it is not difficult
to simulate an unconditional jump in such a way that
appears conditional to simple static analysis:

xor %eax , %eax
cmp %eax
j e p o s t c a l l
c a l l some funct ion
p o s t c a l l :

r e s t o f program . . .

7 Impact

With function recogniztion no longer accurate, func-
tions can no longer to be trusted as recognized. Soft-

10 CONCLUSIONS 4

ware expected to be FLIRT aware should take due
note that function hints may be misleading.

It might also be possible to design a program to
transform a program into code that IDA completly
recognizes as library functions. However, if the pur-
pose was to confuse the analyst by not knowing which
are library functions and which aren’t, it is probably
easier to obfuscate the code by other methods. How-
ever, this may have interesting effects on IDA’s ability
to process a file.

8 Countermeasures

Several others have attempted to do more advanced
function recognition schemes such as the works of
Silvio Cesare and Yang Xiang (A Fast Flowgraph
Based Classification System for Packed and Polymor-
phic Malware on the Endhost). Most of these are
based around control flows graphs within the func-
tion. FLIRT does this to a very limited aspect with
its ability to record a single external function call,
but was shown to be insufficient. Using flow graph
approaches, the crc16 function may have been much
more difficult to forge since all of the blocks are very
small. However, some samples, such as our exam-
ple payload do not require branches. By taking ad-
vantage of limitations of static analysis, it should be
possible to view conditional branches as opportuni-
ties instead of absolutes. This may allow allow the
flexibility necessary to forge a flowgraph based signa-
ture.

It should be noted, however, recording more in-
formation about a function will come at the cost of
recognizing fewer variations of that function. Since
it is generally better to error on the side of caution
in function recognition (FLIRT), this may be an ac-
ceptable compromise.

9 Future work

Several improvements could be made to the attack.
First, proper stack cleanup could be done with mini-
mal effort. Additionally, since this program only calls
crc16 with a fixed value, this forged value could be
returned to maintain functionality. A way to accom-
plish all of this more easily may be to do a return to
libc style call where the stack is modified in the forged
library function to make a function call upon return.
This technique would be useful since it could likely
be setup in such a way that static analysis would not
reveal the function call. Since IDA does do a some-
what detailed stack analysis, something like dynamic
pointer math may be required to confuse it.

Additionally, the simple nop sled is very obvious to
an analyst. If nothing else, a simple entropy analysis
will show the forged area differs significantly from the
rest of the program. This can be solved, for exam-
ple, by introducing meaningless statements to mar-
shal data around registers or jump conditionally to
areas that also do nothing. This would make at least
a quick glaze over the instruction sequence to seem
legitimate library code.

10 Conclusions

This paper has given a background on FLIRT and
shown why it is weak to collisions. Collisions can
be generated by using the CRC16 section or by tak-
ing advantage of the lack of checks performed on the
tailing bytes. The exact match nature of a thirty-two
byte or less function makes them resistant to attacks.
FLIRT attacks might be mitigated by recording more
flow information within the function at a tradeoff of
not recognizing some variations of that function. Ul-
timately, any signature based technique can likely be
attacked and its only a question of how resistant they
are. FLIRT is showing its age by using a crypto-
graphically insecure hashing algorithm and topping
it off with a potentially large wild-card block. While
FLIRT will remain useful for reverse engineering code
generated with commercial off the shelf compilers,
software employing anti-reverse engineering mecha-
nisms such as viruses and copy protection schemes
may employ these techniques to hinder analysis.

References

[1] Ccso.com. Cyclic redundancy check, wikipedia,
the free encyclopedia. http://en.wikipedia.
org/wiki/Cyclic_redundancy_check.

[2] Chris Eagle. The IDA Pro Book: the Unofficial
Guide to the World’s Most Popular Disassembler.
No Starch, 2008.

[3] Ilfak Guilfanov. Fast library identification and
recognition technology. http://www.hex-rays.
com/idapro/flirt.htm.

[4] Hex-Rays. Ida pro disassembler - multi-
processor, windows hosted disassembler and de-
bugger. http://www.hex-rays.com/idapro/.

[5] John McMaster. uvudec wiki. https://github.
com/JohnDMcMaster/uvudec/wiki.

B TEST PROGRAM 5

Appendices

A Original crc16 function

The two most popular CRC16 implementations seem
to be this and a table based method. This imple-
mentation has been seen across the Internet in many
locations. As such, I do not really know who wrote
it and the site that I got it from no longer hosts it.

u i n t 1 6 t crc16 (const char ∗d p ,
u i n t 3 2 t l ength) {

u i n t 8 t i ;
u i n t 1 6 t d , c r c = 0 x f f f f ;
i f (l ength == 0) return (˜ c rc) ;
do {

f o r (i =0, d=0 x f f & ∗d p++;
i < 8 ; ++i , d >>= 1) {

i f ((c r c & 0x0001) ˆ (d & 0x0001))
c r c = (c rc >> 1) ˆ 0x8408 ;

e l s e c r c >>= 1 ;
}

} whi le (−− l ength) ;
c r c = ˜ crc ;
d = crc ;
c r c = (c rc << 8) | (d >> 8 & 0 x f f) ;
r e turn (c r c) ;

}

Disassembly:

00000000 < crc16 >:
0 : 55 push %ebp
1 : 89 e5 mov %esp ,%ebp
3 : 83 ec 10 sub $0x10 ,%esp
6 : 66 c7 45 f e f f f f

movw $ 0 x f f f f ,−0x2(%ebp)
c : 83 7d 0c 00 cmpl $0x0 , 0 xc(%ebp)
10 : 75 08 jne 1a <crc16+0x1a>
12 : 0 f b7 45 f e movzwl −0x2(%ebp) ,% eax
16 : f 7 d0 not %eax
18 : eb 7 f jmp 99 <crc16+0x99>
1a : c6 45 fb 00 movb $0x0 ,−0x5(%ebp)
1e : 8b 45 08 mov 0x8(%ebp) ,% eax
End l ead ing bytes
21 : 0 f b6 00 movzbl (%eax) ,% eax
24 : 66 98 cbtw
26 : 66 25 f f 00 and $0xf f ,%ax
2a : 66 89 45 f c mov %ax ,−0x4(%ebp)
2e : 83 45 08 01 addl $0x1 , 0 x8(%ebp)
32 : eb 2e jmp 62 <crc16+0x62>
34 : 0 f b7 55 f e movzwl −0x2(%ebp) ,%edx
38 : 0 f b7 45 f c movzwl −0x4(%ebp) ,% eax
3c : 31 d0 xor %edx ,%eax
3e : 83 e0 01 and $0x1 ,%eax

41 : 84 c0 t e s t %al ,% a l
43 : 74 11 j e 56 <crc16+0x56>
45 : 0 f b7 45 f e movzwl −0x2(%ebp) ,% eax
49 : 66 d1 e8 shr %ax
4c : 66 35 08 84 xor $0x8408 ,%ax
50 : 66 89 45 f e mov %ax ,−0x2(%ebp)
54 : eb 04 jmp 5a <crc16+0x5a>
56 : 66 d1 6d f e shrw −0x2(%ebp)
5a : 80 45 fb 01 addb $0x1 ,−0x5(%ebp)
5e : 66 d1 6d f c shrw −0x4(%ebp)
62 : 80 7d fb 07 cmpb $0x7 ,−0x5(%ebp)
66 : 76 cc jbe 34 <crc16+0x34>
68 : 83 6d 0c 01 sub l $0x1 , 0 xc(%ebp)
6c : 83 7d 0c 00 cmpl $0x0 , 0 xc(%ebp)
70 : 75 a8 jne 1a <crc16+0x1a>
72 : 66 f7 55 f e notw −0x2(%ebp)
76 : 0 f b7 45 f e movzwl −0x2(%ebp) ,% eax
7a : 66 89 45 f c mov %ax ,−0x4(%ebp)
7e : 0 f b7 45 f e movzwl −0x2(%ebp) ,% eax
82 : c1 e0 08 s h l $0x8 ,%eax
85 : 89 c2 mov %eax ,%edx
87 : 0 f b7 45 f c movzwl −0x4(%ebp) ,% eax
8b : 66 c1 e8 08 shr $0x8 ,%ax
8 f : 09 d0 or %edx ,%eax
91 : 66 89 45 f e mov %ax ,−0x2(%ebp)
95 : 0 f b7 45 f e movzwl −0x2(%ebp) ,% eax
99 : c9 l eave
9a : c3 r e t

B Test program

#inc lude <s t d i o . h>
#inc lude ” c rc . h”
i n t main (void) {

char to hash [] = ” Already t r i e d ”
”a SIGQUIT, so now i t ’ s ”
”KILL DASH 9 . ” ;

p r i n t f (” crc16 : 0x%04X\n” ,
crc16 (&to hash [0] ,

s i z e o f (to hash))) ;
r e turn 0 ;

}

C A crc16 collision

00000000 <crc16 >:
0 : 55 push %ebp
1 : 89 e5 mov %esp ,%ebp
3 : 83 ec 10 sub $0x10 ,%esp
6 : 66 c7 45 f e f f f f movw $ 0 x f f f f ,−0x2(%ebp)
c : 83 7d 0c 00 cmpl $0x0 , 0 xc(%ebp)
10 : 75 08 jne 1a <crc16+0x1a>

C A CRC16 COLLISION 6

12 : 0 f b7 45 f e movzwl −0x2(%ebp) ,% eax
16 : f 7 d0 not %eax
18 : eb 7 f jmp 99 <crc16+0x99>
1a : c6 45 fb 00 movb $0x0 ,−0x5(%ebp)
1e : 8b 45 08 mov 0x8(%ebp) ,% eax
21 : 90 nop
22 : 90 nop
. . .
5 c : 90 nop
5d : 90 nop
o \ n
5e : 68 6 f 0a 00 00 push $0xa6f
h e l l
63 : 68 68 65 6c 6c push $0x6c6c6568
arg 2 : po in t e r to message to write ,
on the s tack
68 : 89 e1 mov %esp ,%ecx
6a : ba 06 00 00 00 mov $0x6 ,%edx
arg 1 : f i l e handle (stdout)
6 f : bb 01 00 00 00 mov $0x1 ,%ebx
system c a l l number (s y s w r i t e)
74 : b8 04 00 00 00 mov $0x4 ,%eax
c a l l k e rne l
79 : cd 80 i n t $0x80
7b : eb 02 jmp 7 f <crc16+0x7f>
7d : 27 daa
7e : 78 90 j s 10 <crc16+0x10>
80 : 90 nop
81 : 90 nop
82 : 90 nop
. . .
97 : 90 nop
98 : 90 nop
99 : c9 l eave
9a : c3 r e t

