Construction Analysis

Xilinx XC9536 CPLD

INDEX TO TEXT

TITLE	PAGE
INTRODUCTION	1
MAJOR FINDINGS	1
TECHNOLOGY DESCRIPTION	
Packaging/Assembly	2
Die Process	2 - 3
ANALYSIS RESULTS I	
Assembly	4
ANALYSIS RESULTS II	
Die Process	5 - 7
TABLES	
Procedure	8
Overall Quality Evaluation	9
Package Markings	10
Die Material Analysis	10
Horizontal Dimensions	11
Vertical Dimensions	12

INTRODUCTION

This report describes a construction analysis of the Xilinx XC9536 CPLD. One device packaged in a 44-pin VQFP (very small quad flat pack) with gull wing leads for surface mount applications was provided. The part was date coded 9633.

MAJOR FINDINGS

Questionable Items:¹

• Metal 2 aluminum thinned up to 100 percent² at some vias (Figure 15) and metal 1 aluminum thinned up to 100 percent² at some contacts (Figures 21 and 22). Barrier metal maintained continuity.

Special Features:

- Fast FLASH technology.
- Sub-micron gates (0.45 micron N-channel, 0.5 micron P-channel).

¹*These items present possible quality or reliability concerns. They should be discussed with the manufacturer to determine their possible impact on the intended application.*

²Seriousness depends on design margins.

TECHNOLOGY DESCRIPTION

Packaging/Assembly:

- The device was encapsulated in a 44-pin very small quad flat pack with gull wing leads.
- Lead locking provisions (anchors) at all pins.
- Thermosonic ball bond method using gold wire.
- Sawn dicing (full depth).
- Silver (Ag) epoxy die attach.

Die Process:

- Fabrication: Twin-well CMOS, selective oxidation process. P substrate and no epi.
- Final passivation: A layer of silicon-nitride over silicon-dioxide.
- Metallization: Two levels of aluminum interconnect patterned by dry-etch techniques. A titanium-nitride (TiN) cap and barrier metal were employed with both metal levels. Standard vias and contacts were employed (no plugs).
- Interlevel dielectric: Two layers of silicon-dioxide. A spin-on-glass (SOG) was used between these layers for planarization purposes. No evidence of chemical mechanical planarization (CMP) was present.
- Pre-metal glass: A thick reflow glass over various densified oxides. It appeared to have been reflowed prior to contact cuts only.
- Polysilicon: Two layers of polysilicon were present. Poly 1 was used exclusively in the array for floating gates and poly 2 (poly and tungsten silicide) was used for all standard gates on the die and word and program lines in the array.

<u>TECHNOLOGY DESCRIPTION</u> (continued)

- Diffusions: Transistors were formed using an LDD process in which the oxide sidewall spacers were left in place. Implanted N+ and P+ sources/drains. No silicide was used at diffusions.
- Twin-wells were used in a P substrate. No epi was present. A step was present in the oxide at the well boundaries.
- No buried contacts were employed on this device.
- Memory cells: The programmable array consisted of EEPROM cells (Fast FLASH technology). Metal 2 was used to form "piggyback" word and program lines. Metal 1 distributed the bit lines and GND. Poly 2 formed the word and program lines and poly 1 formed the floating gates. The interpoly dielectric consisted of ONO (oxide-nitride-oxide).
- Design features: Metal 2 bus lines were slotted for stress relief. Some isolated vias were present on the die which may be used for probing purposes (see Figure 4).

ANALYSIS RESULTS I

Assembly:

Figures 1 and 6

Questionable Items: None.

General Items:

- 44-pin VQFP plastic packages with gull wing leads.
- Overall package quality: Normal. No defects were found on the external portions of the package.
- Leadframe: Lead-locking provisions (anchors) were present at all pins.
- Die attach: The die was attached to the header with silver-epoxy of normal quality.
- Die dicing: Die separation was by sawing with normal quality workmanship. No cracks or large chipouts were found in the die.
- Wirebonding: Thermosonic ball bond method using gold wire. Bonds were well formed and placement was good. Bond pad pitch was tight (117 microns); however, no problems were noted and wire spacing was good. Bond pad structure employed both metals.

ANALYSIS RESULTS II

Die Process:

Figures 2 - 37

Questionable Items:¹

• Metal 2 aluminum thinned up to 100 percent² at some vias (Figure 15) and metal 1 aluminum thinned up to 100 percent² at some contacts (Figures 21 and 22). Barrier metal maintained continuity.

Special Features:

- Fast FLASH technology.
- Sub-micron gates (0.45 micron N-channel, 0.5 micron P-channel).

General Items:

- Fabrication process: Selective oxidation CMOS process using twin-wells in a P substrate. No epi was present.
- Process Implementation: Die layout was clean and efficient. Alignment/registration was good at all levels and no damage or contamination was found.
- Final passivation: A layer of silicon-nitride over silicon-dioxide. Passivation extended into the scribe lane covering all metallization. A cutout was present in the passivation around the die perimeter in the scribe lane. This was probably employed to prevent cracks from radiating inward.
- Metallization: Two levels of aluminum interconnect. A titanium-nitride (TiN) cap and barrier metal were employed with each metal level. Standard vias and contacts were employed (no plugs).

¹*These items present possible quality or reliability concerns. They should be discussed with the manufacturer to determine their possible impact on the intended application.*

²Seriousness depends on design margins.

ANALYSIS RESULTS II (continued)

- Metal patterning: Both layers were defined by dry-etch techniques. Definition was normal for both layers. Some neckdown of metal 2 lines was noted where they crossed over metal 1 lines. Metal lines were widened at vias and contacts.
- Metal defects: No voiding or notching of the metals was found. No silicon nodules were found following the removal of the aluminum layers. No problems were noted.
- Metal step coverage: Metal 2 aluminum thinned up to 100 percent at some via edges. Metal 1 aluminum also thinned up to 100 percent at some contact edges. Barrier metal maintained continuity. The excessive thinning appears to be due to the metal deposition method employed.
- Vias and contacts: Metal 2 vias were overetched into the metal 1 cap; however, no problems are foreseen. No overetching of metal 1 contacts was noted.
- Interlevel dielectric: The dielectric between the two metal levels consisted of two layers of silicon-dioxide with a spin-on-glass (SOG) employed between for planarization purposes. No problems were noted.
- Pre-metal glass: The glass under metal 1 consisted of a thick reflow glass which was apparently reflowed prior to contact cuts only. This deposited glass was located over various densified oxides. No problems were found in any of the glass layers.
- Polysilicon: Two layers of poly were used. Polycide (tungsten silicide on poly 2) formed all standard gates on the die. Poly 1 was used exclusively for floating gates in the array. No poly stringers or spurs were present. Definition was by a dry etch of good quality.
- Isolation: Local oxide (LOCOS). No problems were present at the birdsbeak. A step was present in the field oxide indicating a twin-well process was used.

ANALYSIS RESULTS II (continued)

- Diffusions: Transistors were formed using an LDD process in which the oxide sidewall spacers were left in place. Implanted N+ and P+ sources/drains were employed. Definition was normal and no problems were present. Diffusions were not silicided.
- Wells: Twin-wells in a P substrate. No problems were apparent.
- Epi: No epi was used. No substrate defects were found.
- Buried contacts: No buried contacts were used on this device.
- Memory cells: The programmable array consisted of EEPROM cells (Fast FLASH technology). Metal 2 was used to form "piggyback" word and program lines. Metal 1 formed the bit lines and distributed GND. Poly 2 formed the word and program lines and poly 1 formed the floating gates. The interpoly dielectric consisted of ONO (oxide-nitride-oxide). Cell size was 5.2 x 6 microns and cell area was 31 microns².

PROCEDURE

The devices were subjected to the following analysis procedures:

External inspection X-ray Decapsulate Internal optical inspection Passivation removal and inspect metal 2 Metal 2 removal and inspect barrier Delayer to metal 1 and inspect Aluminum 1 removal and inspect barrier Delayer to poly/substrate and inspect poly structures and die surface Die material analysis Die sectioning (90° for SEM)* Measure horizontal dimensions

*Delineation of cross-sections is by silicon etch unless otherwise indicated.

OVERALL QUALITY EVALUATION: Overall Rating: Normal/Poor

DETAIL OF EVALUATION

Package integrity	Ν
Die placement	G
Die attach quality	Ν
Wire spacing	G
Wirebond placement	G
Wirebond quality	Ν
Dicing quality	G
Die attach method	Silver-epoxy
Dicing method	Sawn (full depth)

Die surface integrity:

Tool marks (absence)	G
Particles (absence)	G
Contamination (absence)	G
Process defects (absence)	G
General workmanship	Ν
Passivation integrity	G
Metal definition	Ν
Metal integrity	P*
Metal registration	G
Contact coverage	G
Contact registration	G

*Metal 2 and metal 1 aluminum thinning up to 100 percent.

G = Good, P = Poor, N = Normal, NP = Normal/Poor

PACKAGE MARKINGS

<u>TOP</u>

BOTTOM (molded)

(logo) XILINX® XC9536TM VQ44ASJ9633 A63042A 7C B(penciled) KOREA 23

DIE MATERIAL ANALYSIS

Final passivation:	Silicon-nitride over silicon-dioxide.
Metallization 2:	Aluminum with a titanium-nitride cap and barrier metal.
Interlevel dielectric:	Two layers of silicon-dioxide with a spin-on glass.
Metallization 1:	Aluminum with a titanium-nitride cap and barrier metal.
Intermediate glass:	Reflow glass.
Polycide:	Tungsten on poly 2.

HORIZONTAL DIMENSIONS

Die size:	3.4 x 5.6 mm (134 x 222 mils)	
Die area:	19.2 mm ² (29,748 mils ²)	
Min pad size:	0.11 x 0.11 mm (4.3 x 4.3 mils)	
Min pad window:	0.09 x 0.09 mm (3.7 x 3.7 mils)	
Min pad space:	8 microns	
Min metal 2 width:	0.8 micron	
Min metal 2 space:	1.0 micron	
Min metal 2 pitch (uncontacted):	1.9 micron	
Min metal 2 pitch (contacted):	2.6 microns	
Min via:	1.0 micron (round)	
Min via pitch:	2.0 microns	
Min metal 1 width:	0.55 micron	
Min metal 1 space:	0.9 micron	
Min metal 1 pitch (uncontacted):	1.6 micron	
Min metal 1 pitch (contacted):	2.5 microns	
Min contact:	1.0 micron	
Min contact pitch:	1.7 micron	
Min contact-to-gate:	0.6 micron	
Min poly 2 width:	0.45 micron	
Min poly 2 space:	0.85 micron	
Min poly 1 width:	0.65 micron	
Min gate length [*] (N-ch):	0.45 micron	
(P-ch):	0.5 micron	
Cell pitch:	5.2 x 6 microns	
Cell size:	31 microns ²	

*Physical gate length.

VERTICAL DIMENSIONS

Die thickness:

0.4 mm (16 mils)

Layers:

Passivation 2:	0.45 micron
Passivation 1:	0.25 micron
Metallization 2 - cap:	0.05 micron (approx.)
- aluminum:	0.75 micron
- barrier:	0.1 micron
Interlevel dielectric:	0.65 - 1.9 micron
Metallization 1 - cap:	0.07 micron
- aluminum:	0.5 micron
- barrier:	0.1 micron
Pre-metal glass:	0.35 - 0.9 micron
Polycide - silicide:	0.13 micron
- poly 2:	0.1 micron
Poly 1:	0.1 micron
Local oxide:	0.5 micron
N+ S/D:	0.17 micron
P+ S/D:	0.2 micron
N-well:	4.0 microns

INDEX TO FIGURES

PACKAGE PHOTOGRAPH AND X-RAY	Figure 1
DIE LAYOUT AND IDENTIFICATION	Figures 2 - 5
PHYSICAL DIE STRUCTURES	Figures 6 - 37
CROSS SECTION DRAWING	Figure 30
MEMORY CELL	Figures 31 - 37

Figure 3. Die identification markings. Mag. 400x.

Mag. 400x

Mag. 800x

Figure 5. Optical views of die corners. Mag. 160x.

Mag. 2600x

Figure 6. SEM section views of the edge seal structure.

Figure 7. Topological and section views of the bond pad layout and structure.

Mag. 7900x

Mag. 7600x

Mag. 15,500x

Mag. 26,250x

Mag. 34,000x

Mag. 6000x

Mag. 15,000x, 0°

Mag. 31,000x, 55°

Mag. 14,600x

Figure 15. SEM section views of metal 2-to-metal 1 vias.

Mag. 18,300x

Figure 16. SEM section views of metal 1 line profiles.

Mag. 4000x

Mag. 6000x

Figure 18. Topological SEM views of metal 1 design rule features. 0° .

Mag. 9000x

Mag. 27,000x

Mag. 26,000x, 0°

Mag. 20,000x, 55°

Figure 21. SEM section views of metal 1 contacts.

Mag. 23,300x

Figure 22. SEM section views illustrating metal 1 contact spacings.

Figure 24. Topological SEM views of poly design rule features.

Figure 25. Perspective SEM views of poly coverage. 55°.

Mag. 17,700x

Figure 27. SEM section views of P-channel transistors.

Figure 28. SEM section views of the I/O structure.

Mag. 36,400x

Figure 29. SEM section views of local oxide and well structure.

Orange = Nitride, Blue = Metal, Yellow = Oxide, Green = Poly,

Red = Diffusion, and Gray = Substrate

Figure 30. Color cross section drawing illustrating device structure.

Figure 31. Topological SEM views of the EEPROM array illustrating "piggyback" word line connections. Mag. 5000x, 0°.

Figure 33. SEM detail views of EEPROM cells. 55° .

poly

metal 2

metal 1

Figure 34. Topological SEM views of EEPROM cells and schematic. Mag. 5000x, 0° .

PICYBACK" LINES

10,500x

Mag. 47,000x

Poly 2 SELECT GATE PRE-METAL DIELECTRIC N+ S/D

Xilinx XC9536

Figure 37. SEM section views of EEPROM cells (parallel to word line).