Construction Analysis

AMD/Vantis MACHL V466-10 EEPLA

INDEX TO TEXT

TITLE	PAGE
INTRODUCTION	1
MAJOR FINDINGS	1
TECHNOLOGY DESCRIPTION Die Process	2 - 3
ANALYSIS RESULTS I Die Process	4 - 6
TABLES	
Procedure	7
Overall Quality Evaluation	8
Die Material Analysis	9
Horizontal Dimensions	10
Vertical Dimensions	11

INTRODUCTION

This report describes a construction analysis of the AMD (Vantis) MACHLV466-10 EEPLA. One decapped device was received for the analysis. It was date coded 9704.

MAJOR FINDINGS

- CMP planarization.
- Sub-micron gate lengths (0.4 micron N-channel and 0.45 micron P-channel).

¹*These items present possible quality or reliability concerns. They should be discussed with the manufacturer to determine their possible impact on the intended application.*

TECHNOLOGY DESCRIPTION

Die Process:

- Devices were fabricated using a selective oxidation, P-well CMOS process in a N epi on a P substrate.
- Passivation consisted of a layer of nitride over a layer of silicon-dioxide.
- Metallization employed three layers of metal. All metal layers consisted of aluminum with titanium-nitride caps. Tungsten (W) plugs were used at all three layers for vias and contacts.
- Interlevel dielectric 2 (between metals 3 and 2) consisted of two layers of silicondioxide with a planarizing glass (SOG) layer in between. Interlevel dielectric 1 (between metals 2 and 1) also consisted of two layers of silicon-dioxide with a planarizing glass (SOG) layer in between.
- Pre-metal dielectric consisted of a thick layer of glass over a layer of low density glass over a thin (sealing) layer of nitride.
- A single layer of poly (no silicide) was used to form all gates on the die. Direct poly-to-diffusion (buried) contacts were not used. Definition was by a dry etch of normal quality.
- Implanted N+ and P+ diffusions formed the sources/drains of the CMOS transistors. An LDD process was used with oxide sidewall spacers left in place.
- Local oxide (LOCOS) isolation. No step was noted at the edge of the well, probably indicating a single polarity well process.

<u>TECHNOLOGY DESCRIPTION</u> (continued)

- Two EEPROM cell arrays were used on the device. Cell A in Figures 22 28 was the main cell design on the device. Both main portions of the cell were similar; however, Cell B in Figures 28 31 used nine additional transistors. Metal 3 was used to distribute GND. Metal 2 was used to form the select lines. Metal 1 was used to form Out 2, Out 1, and the PGM lines. Poly was used to form all the gates on both cells.
- Redundancy fuses were not present.

ANALYSIS RESULTS

Die Process:

Figures 7 - 34

Questionable Items:¹ None.

Special Features:

- CMP planarization incorporating an SOG.
- Sub-micron gate lengths (0.4 micron N-channel and 0.45 micron P-channel).

General Items:

- Fabrication process: Devices were fabricated using a selective oxidation, N-well CMOS process in a P-epi on a P substrate.
- Process implementation: Die layout was clean and efficient. Alignment was good at all levels. No damage or contamination was found.
- Die coat: No die coat was present.
- Final passivation: Consisted of a layer of nitride over a layer of silicon-dioxide. The integrity test indicated defect-free passivation. Edge seal was good.
- Metallization: Three levels of metal. All layers consisted of aluminum with titanium-nitride caps. Tungsten (W) plugs were used under all three metal layers.

¹*These items present possible quality or reliability concerns. They should be discussed with the manufacturer to determine their possible impact on the intended application.*

ANALYSIS RESULTS (continued)

- Metal patterning: All metal layers were patterned by a dry etch of normal quality.
- Metal defects: No voiding, notching, or neckdown was noted in any of the metal layers. No silicon nodules were noted following the removal of any metal layer.
- Metal step coverage: Minimal metal thinning was noted due to the use of CMP planarization and tungsten (W) plugs.
- Interlevel dielectric 2 (between metals 3 and 2) consisted of two layers of silicondioxide with a planarizing glass (SOG) layer between. Interlevel dielectric 1 (between metals 2 and 1) also consisted of two layers of silicon-dioxide with a planarizing glass (SOG) layer between. As mentioned both of these were planarized by CMP. No problems were found in any of these layers.
- Pre-metal dielectric: A thick layer of glass over a low density glass over a thin (sealing) layer of silicon-nitride was used under metal 1. This structure was also planarized by CMP.
- Contact defects: Via and contact cuts were defined by a single step process. No over-etching of the contacts and vias was noted.
- A single layer of poly (no silicide) was used to form all gates on the die. Direct poly-to-diffusion (buried) contacts were not used. Definition was by dry-etch of normal quality.
- Implanted N+ and P+ diffusions formed the sources/drains of the CMOS transistors. An LDD process was used with oxide sidewall spacers left in place. No problems were found.

ANALYSIS RESULTS (continued)

- Local oxide (LOCOS) isolation was used. No step was present at the well boundaries, probably indicating this is a single polarity well process.
- Two EEPROM cell arrays were used on the device. Cell A in Figures 22 28 was the main cell on the device. Both cell layouts were similar; however, Cell B in Figures 28 31 used nine additional transistors. Metal 3 was used to distribute GND. Metal 2 was used to form the select lines. Metal 1 was used to form Out 2, Out 1, and the PGM lines. Poly formed all the gates on both cell types. Cell "A" pitch was 5.5 x 10.5 microns. Cell "B" pitch was 17.5 x 18 microns.
- Redundancy fuses were not present on the die.

PROCEDURE

The devices were subjected to the following analysis procedures:

Internal optical inspection SEM of passivation Passivation integrity test Passivation removal SEM inspection of metal 3 Metal 3 removal and inspect barrier Delayer to metal 2 and inspect Metal 2 removal and inspect barrier Delayer to metal 1 and inspect Metal 1 removal and inspect barrier Delayer to silicon and inspect poly/die surface Die sectioning (90° for SEM)* Die material analysis Measure horizontal dimensions

*Delineation of cross-sections is by silicon etch unless otherwise indicated.

OVERALL QUALITY EVALUATION: Overall Rating: Normal

DETAIL OF EVALUATION

Die attach quality	Ν
Dicing quality	Ν
Die attach method	Silver-epoxy
Dicing method	Sawn (full depth)
Die surface integrity:	
Toolmarks (absence)	G
Particles (absence)	G
Contamination (absence)	G
Process defects (absence)	G
General workmanship	Ν
Passivation integrity	G
Metal definition	Ν
Metal integrity	Ν
Metal registration	Ν
Contact coverage	Ν
Contact registration	Ν

G = *Good*, *P* = *Poor*, *N* = *Normal*, *NP* = *Normal/Poor*

DIE MATERIAL ANALYSIS

Final passivation:	Consisted of a layer of nitride over a layer of silicon- dioxide.
Metallization 3:	Aluminum (Al) with a titanium-nitride (TiN) cap.
Metallization 2:	Aluminum (Al) with a titanium-nitride (TiN) cap.
Metallization 1:	Aluminum (Al) with a titanium-nitride (TiN) cap.
Plugs:	Tungsten (W).

HORIZONTAL DIMENSIONS

Die size:	7.3 x 7.3 mm (285 x 285 mils)
Die area:	53 mm ² (81,255 mils ²)
Min pad size:	0.11 x 0.13 mm (4.7 x 5.1 mils)
Min pad window:	0.09 x 0.09 mm (3.7 x 3.7 mils)
Min pad space:	10 microns
Min metal 3 width:	1.0 micron
Min metal 3 space:	0.5 micron
Min metal 3 pitch:	1.5 micron
Min metal 2 width:	1.0 micron
Min metal 2 space:	0.4 micron
Min metal 2 pitch:	1.4 micron
Min metal 1 width:	0.65 micron
Min metal 1 space:	0.45 micron
Min metal 1 pitch:	1.1 micron
Min via (M3-M2):	0.45 micron (diameter)
Min via (M2-M1):	0.5 micron (diameter)
Min contact:	0.55 micron
Min poly width:	0.4 micron
Min poly space:	0.55 micron
Min gate length - (N-channel):*	0.4 micron
- (P-channel):	0.45 micron
EEPROM cell size (cell A):	57.8 microns ²
EEPROM cell pitch (cell A):	5.5 x 10.5 microns
EEPROM cell size (cell B):	315 microns ²
EEPROM cell pitch (cell B):	17.5 x 18 microns

*Physical gate length

VERTICAL DIMENSIONS

Die thickness:

0.4 mm (16.3 mils)

Layers:

Passivation 2:	0.8 micron
Passivation 1:	0.8 micron
Metal 3 - cap:	0.04 micron (approximate)
- aluminum:	0.8 micron
Interlevel dielectric 2 - glass 2:	0.8 micron
- glass 1:	0.06 - 0.12 micron
Metal 2 - cap:	0.10 micron
- aluminum:	0.85 micron
Interlevel dielectric 1- glass 2:	0.35 micron
- glass 1:	0.15 - 0.5 micron
Metal 1 - cap:	0.1 micron
- aluminum:	0.5 micron
Pre-metal dielectric:	0.75 - 1.2 micron
Sealing nitride:	0.05 micron
Poly:	0.22 micron
Local oxide:	0.35 micron
N+ S/D:	0.22 micron
P + S/D:	0.15 micron
N-well:	2 microns (approximate)

INDEX TO FIGURES

DIE LAYOUT AND IDENTIFICATION	Figures 1 - 3
PHYSICAL DIE STRUCTURES	Figures 4 - 31
COLOR PROCESS DRAWING	Figure 21
EEPROM CELL STRUCTURE (CELL A)	Figures 22 - 28

EEPROM CELL STRUCTURE (CELL B)

Figures 29 - 31

Mag. 130x

Mag. 10,000x

Mag. 2100x

Mag. 26,000x

Figure 6. SEM section views of metal 3 line profiles.

Mag. 3200x

Mag. 6500x, 60°

Mag. 26,000x, 60°

Mag. 26,000x

Mag. 26,000x

Mag. 3200x

Mag. 5000x, 60°

Mag. 26,000x, 60°

Mag. 26,000x

Mag. 40,000x

Mag. 5000x

Figure 13. Topological SEM views of metal 1 patterning. 0° .

Mag. 8000x

	20
TIN CAP	
ALUMINUM 1	-/
	W PLUG
and the second sec	

metal 1-to-poly

metal 1-to-P+

metal 1-to-N+

Figure 15. SEM section views of metal 1 contacts (silicon etch). Mag. 26,000x.

Mag. 3200x

Figure 16. Topological SEM views of poly patterning. 0° .

Figure 17. Perspective SEM views of poly coverage. 60° .

N-channel

P-channel

Figure 19. SEM section view of a typical local oxide birdsbeak. Mag. 52,000x.

AMD/Vantis MACHL V466-10

Orange = Nitride, Blue = Metal, Yellow = Oxide, Green = Poly,

Red = Diffusion, and Gray = Substrate

Figure 21. Color cross section drawing illustrating device structure.

Figure 22. SEM views of the EEPROM cell array (cell A). Mag. 1600x.

metal 3

metal 1, Mag. 3200x

poly, Mag. 3200x

Mag. 52,000x

metal 3

Figure 27. SEM section views of an EEPROM cell (cell A). X-direction.

Mag. 11,000x

metal 1

poly

Figure 29. SEM views of the EEPROM cell (cell B). Mag. 1600x, 0° .

metal 1, Mag. 3200x

poly, Mag. 3200x

Mag. 52,000x

metal 1

Figure 31. SEM views of the EEPROM cell (cell B). Mag. 3200x, 0° .