Construction Analysis

Rockwell R6732-13 RF to IF Down Converter

INDEX TO TEXT

TITLE	PAGE
INTRODUCTION	1
MAJOR FINDINGS	1
TECHNOLOGY DESCRIPTION	
Assembly	2
Die Process	2 - 3
ANALYSIS RESULTS I	
Assembly	4
ANALYSIS RESULTS II	
Die Process and Design	5 - 7
ANALYSIS PROCEDURE	8
TABLES	
Overall Evaluation	9
Package Markings	10
Wirebond Strength	10
Die Material Analysis	10
Horizontal Dimensions	11
Vertical Dimensions	12

INTRODUCTION

This report describes a competitive analysis of the Rockwell R6732-13 RF-to-IF down converter. One device packaged in an 80-pin Square Quad Flat Package (SQFP) was received for the analysis. The device was taken from a GPS receiver chipset manufactured by IST. The IC was date coded 9642. Two dice, one GaAs and one Si, were encapsulated in the package. This report describes the analysis performed on the Si IC.

MAJOR FINDINGS

Questionable Items:¹

- Metal 2 aluminum thinned up to 100 percent² at some locations of some vias.
 Barrier metal remained intact to provide continuity.
- Metal 1 aluminum thinned up to 100 percent² at some locations of some contacts.
 Barrier metal remained intact to provide continuity.

Special Features:

• Titanium silicided diffusion structures.

¹*These items present possible quality or reliability concerns. They should be discussed with the manufacturer to determine their possible impact on the intended application.*

²Seriousness depends on design margins.

TECHNOLOGY DESCRIPTION

Assembly:

- The device was encapsulated in an 80-pin plastic Square Quad Flat Package (SQFP).
- Copper (Cu) leadframe was internally plated with silver (Ag). The leadframe was split to accommodate both dice.
- External pins were tinned with tin-lead (SnPb) solder.
- Lead-locking provisions (anchors) at all pins. Holes were also present in the GaAs leadframe.
- Thermosonic ball bonding using 1.2 mil O.D. gold wire.
- Pins 1 40 were used with the GaAs IC. Pins 41 80 were used with the Si IC. Pins 50, 51, 60, 61, 70 were connected to the Si IC's leadframe biasing the P-substrate to GND.
- Sawn dicing (full-depth).
- Silver-filled epoxy die attach.

Die Process:

- Fabrication process: Selective oxidation CMOS process employing multiple wells in a P-epi on a P-substrate.
- Final passivation: A layer of nitride over a layer of glass.
- Metallization: Two levels of metal defined by standard dry-etch techniques. Both consisted of aluminum with a titanium-nitride cap and barrier. Standard vias and contacts were used (no plugs).

<u>TECHNOLOGY DESCRIPTION</u> (continued)

- Interlevel dielectric: Interlevel dielectric consisted of two layers of silicon-dioxide with a planarizing spin-on-glass (SOG) between them. The SOG had been etched back.
- Polysilicon: A single layer of polycide (titanium silicide on poly) was used to form all gates on the die and the bottom plates of capacitors. Poly resistors were formed without the titanium silicide by the use of a patterned oxide mask (Figure 29).
 Definition was by a dry etch of normal quality. Direct poly-to-diffusion (buried) contacts were not used.
- Diffusions: Implanted N+ and P+ diffusions formed the sources/drains of the CMOS transistors. Diffusions were silicided (salicide process) with titanium. An LDD process was used with oxide sidewall spacers left in place.
- Wells: A complex well structure employing multiple wells in a P-epi on a Psubstrate. A step was present at well boundaries.
- Redundancy: Fuses were not used.

ANALYSIS RESULTS I

Assembly:

<u>Figures 1 - 6</u>

Questionable Items: None.

General items:

- The device was encapsulated in an 80-pin plastic Square Quad Flat Package (SQFP).
- Overall package quality: Good. Internal plating of the copper leadframe was silver. External pins were tinned with tin-lead (SnPb). No cracks or voids present. No gaps were noted at lead exits.
- Lead-locking provisions (anchors) were present at all pins.
- Wirebonding: Thermosonic ball method using 1.2 mil O.D. gold wire. Nine bond lifts occurred during wire pull tests; however, metal 2 at the bond pads had been etched during decapsulation. The remaining pad metal (metal 1) was "ripped out" during bond lifts indicating that an intermetallic bond had been formed. It was noted that all bond pull strengths were within MIL-STD requirements.
- Pins 50, 51, 60, 61, 70 were connected to the Si IC's leadframe biasing the P-substrate to GND.
- Die attach: Silver-filled epoxy of good quality. No voids were noted in the die attach and no problems are foreseen.
- Die dicing: Die separation was by sawing (full depth) with normal quality workmanship.

ANALYSIS RESULTS II

Die Process and Design:

Figures 7 - 33

Questionable Items:¹

- Metal 2 aluminum thinned up to 100 percent² at some via locations. Barrier metal remained intact to provide continuity.
- Metal 1 aluminum thinned up to 100 percent² at some contact locations. Barrier metal remained intact to provide continuity.

Special Features:

• Titanium silicided diffusion structures.

General items:

- Fabrication process: Devices were fabricated using selective oxidation CMOS process employing multiple wells in a P-epi on a P-substrate.
- Process implementation: Die layout was clean and efficient. Alignment was good at all levels. No damage or contamination was found.
- Die coat: No die coat was present.
- Final passivation: A layer of nitride over a layer of glass. Overlay integrity test indicated defect-free passivation. Edge seal was good as the passivation extended

¹*These items present possible quality or reliability concerns. They should be discussed with the manufacturer to determine their possible impact on the intended application.*

²Seriousness depends on design margins.

ANALYSIS RESULTS II (continued)

beyond the metal at the edge of the die. The voids above metal 2 vias are not considered areas of concern.

- Metallization: Two levels of metal were used. Both consisted of aluminum with titanium-nitride caps and barriers. Standard vias and contacts were used (no plugs).
- Metal patterning: Both metal levels were patterned by a dry etch of normal quality.
- Metal defects: No voiding, notching, or neckdown was noted in either of the metal layers. No silicon nodules were noted following removal of either metal.
- Metal step coverage: Metal 2 aluminum thinned up to 100 percent at several via locations. Barrier metal maintained continuity. Metal 1 aluminum also thinned up to 100 percent at some contact locations. Typical metal 1 thinning was 90 percent.
- Interlevel dielectric: Interlevel dielectric consisted of two layers of silicon-dioxide with a planarizing spin-on-glass (SOG) between them. The SOG had been etched back.
- Pre-metal glass: A layer of reflow glass (BPSG) over densified oxide was used under metal 1. Reflow was performed prior to contact cuts only.
- Contact defects: Contact and via cuts were defined by a two-step process. No over-etching of the contacts or vias was noted. No problems were found, except for the one instance shown in Figure 16.
- Polysilicon: A single layer of polycide (titanium silicide on poly) was used to form all gates on the die and bottom plates of capacitors. Poly resistors were formed without the titanium silicide by use of a patterned oxide mask. Definition was by a dry-etch of normal quality. Direct poly-to-diffusion (buried) contacts were not used.

ANALYSIS RESULTS II (continued)

- Diffusions: Standard implanted N+ and P+ diffusions formed the sources/drains of the CMOS transistors. Diffusions were silicided (salicide process) with titanium. An LDD process was used with oxide sidewall spacers left in place. No problems were found.
- Isolation: LOCOS (local oxide isolation). A step was present at the well boundaries.
- Redundancy: Fuses were not present on the die.

PROCEDURE

The devices were subjected to the following analysis procedures:

External inspection X-ray Decapsulate Internal optical inspection SEM of assembly features and passivation Wirepull test Passivation integrity test Passivation removal SEM inspection of metal 2 Metal 2 removal and inspect barrier Delayer to metal 1 and inspect Metal 1 removal and inspect barrier Delayer to silicon and inspect poly/die surface Die sectioning $(90^{\circ} \text{ for SEM})^*$ Die material analysis Measure horizontal dimensions Measure vertical dimensions

*Delineation of cross-sections is by silicon etch unless otherwise indicated.

OVERALL QUALITY EVALUATION: Overall Rating: Normal to Poor

DETAIL OF EVALUATION

Package integrity	G
Package markings	Ν
Die placement	Ν
Die attach quality	G
Wire spacing	G
Wirebond placement	G
Wirebond quality	Ν
Dicing quality	G
Wirebond method	Thermosonic ball bond method using 1.2 mil
	O.D. gold wire.
Die attach method	Silver-epoxy
Dicing method	Sawn (full depth)
Die surface integrity:	
Tool marks (absence)	G
Particles (absence)	G
Contamination (absence)	G
Process defects	NP
General workmanship	Ν
Passivation integrity	G
Metal definition	Ν
Metal integrity	Ν
Metal registration	Ν
Contact coverage	Ν
Contact registration	Ν

G = *Good*, *P* = *Poor*, *N* = *Normal*, *NP* = *Normal/Poor*

PACKAGE MARKINGS

<u>TOP</u>

R6732-13 ©ROCKWELL 93 9642 B21401-12 MEXICO (LOGO)

WIREBOND STRENGTH

Wire material:	1.2 mil O.D. gold
Die pad material:	aluminum
Material at package lands:	silver

<u>Sample #</u>	1
# of wires tested:	20
Bond lifts:	9
Force to break - high:	15.0g
- low:	3.0g
- avg.:	9.0g
- std. dev.:	3.5

DIE MATERIAL ANALYSIS

Overlay passivation:	A layer of silicon-nitride over a layer of glass.
Metallization 2:	Aluminum (Al) with a titanium-nitride (TiN) cap and barrier.
Metallization 1:	Aluminum (Al) with a titanium-nitride (TiN) cap and barrier.
Polycide:	Titanium (Ti) silicide on poly.
Diffusions:	Titanium (Ti) silicide.

HORIZONTAL DIMENSIONS

Die size:	3.3 x 4.2 mm (131 x 164 mils)
Die area:	14 mm ² (21,484 mils ²)
Min pad size:	0.12 x 0.12 mm (4.9 x 4.9 mils)
Min pad window:	0.11 x 0.11 mm (4.3 x 4.3 mils)
Min pad space:	0.07 mm (2.9 mils)
Min metal 2 width:	2.1 microns
Min metal 2 space:	1.0 micron
Min metal 2 pitch:	3.1 microns
Min metal 1 width:	2.1 microns
Min metal 1 space:	1.0 micron
Min metal 1 pitch:	3.1 microns
Min via:	0.85 micron (round)
Min contact:	1.0 micron (round)
Min poly 1 width:	0.8 micron
Min poly 1 space:	1.5 micron
Min diffusion space:	1.4 micron
Min gate length [*] - (N-channel):	0.8 micron
- (P-channel):	1.0 micron

*Physical gate length.

VERTICAL DIMENSIONS

Die thickness:	0.5 mm (19.7 mils)
----------------	--------------------

<u>Layers</u>

Passivation 2:	0.55 micron
Passivation 1:	0.35 micron
Metal 2 - cap:	0.07 micron (approx.)
- aluminum:	0.75 micron
- barrier:	0.1 micron
Intermetal dielectric - glass 2:	0.65 micron
- SOG:	0 - 1.3 micron
- glass 1:	0.4 micron
Metal 1 - cap:	0.07 micron (approx.)
- aluminum:	0.45 micron
- barrier:	0.1 micron
Pre-metal glass:	0.7 micron (average)
Poly - silicide:	0.07 micron
- poly:	0.13 micron
Poly - resistor:	0.25 micron
Local oxide:	0.45 micron
N+ S/D diffusion:	0.2 micron
P+ S/D diffusion:	0.2 micron
P-well:	3.0 microns (approx.)
N-well:	4.5 microns (approx.)
P-epi:	6.5 microns (approx.)

INDEX TO FIGURES

ASSEMBLY	Figures 1 - 6
DIE LAYOUT AND IDENTIFICATION	Figures 7 - 9
PHYSICAL DIE STRUCTURES	Figures 10 - 33
COLOR DRAWING OF DIE STRUCTURE	Figure 27
CAPACITORS AND RESISTORS	Figures 28 - 30
CIRCUIT LAYOUT AND I/O	Figures 31 - 33

Figure 1. Package photographs of the Rockwell R6732-13. Mag. 4.5x.

Figure 2. X-ray view of the package. Mag. 4.5x.

Figure 4. SEM views of typical wirebonding. 60°.

Mag. 120x

Mag. 800x

Mag. 6500x

Figure 7. Whole die photograph of the Silicon IC. Mag. 45x.

Mag. 150x

Mag. 300x

Figure 8. Optical views of die markings.

Figure 9. Optical views of die corners. Mag. 100x.

Mag. 3700x

Mag. 20,000x

Mag. 13,000x

Figure 12. SEM section views of metal 2 line profiles.

Figure 13. Topological SEM views of metal 2 patterning. Mag. 1600x, 0°.

Mag. 2000x

Mag. 2700x

Figure 14. Perspective SEM views of metal 2 step coverage. 60° .

Figure 15. SEM section views illustrating typical vias and interlevel dielectric composition.

Figure 16. SEM section views of via defects.

Mag. 20,000x

Figure 17. SEM section views of metal 1 line profiles.

Mag. 1600x

Mag. 1600x

Figure 19. Perspective SEM views of metal 1 step coverage. 60° .

Mag. 26,000x

Figure 21. SEM section views of a typical metal 1 contact. Glass etch.

Figure 22. Topological SEM views of poly patterning. Mag. 1600x, 0° .

Figure 23. Perspective SEM views of poly coverage. 60°.

Figure 24. SEM section views of typical transistors. Mag. 52,000x.

Mag. 52,000x

Figure 25. SEM section views of a typical birdsbeak and local oxide isolation.

Mag. 1240x

TiN CAP TIN BARRIER **Ti SILICIDE** TIN BARRIER ILD1 TI SILICIDE SOG (ILD2) NITRIDE PASSIVATION ALUMINUM 2 **GLASS PASSIVATION** ILD3 **ALUMINUM 1** PRE-METAL DIELECTRIC LOCOS POLY 1 P+ S/D N-WELL P-WELL N+ S/D P-EPI P SUBSTRATE

TIN CAP

Orange = Nitride, Blue = Metal, Yellow = Oxide, Green = Poly,

Red = Diffusion, and Gray = Substrate

Figure 28. Optical views of resistors and a capacitor. Mag. 600x.

Mag. 26,000x

Mag. 13,000x

Figure 30. SEM section views illustrating a capacitor.

intact

unlayered

Figure 31. Optical views of typical device circuit layout. Mag. 600x.

intact

unlayered

Figure 32. Optical views of typical input protection. Mag. 300x.

Figure 33. SEM section view of the I/O circuitry. Mag. 6500x.