Construction Analysis

Xilinx XC4036EX FPGA

INDEX TO TEXT

TITLE	PAGE
INTRODUCTION	1
MAJOR FINDINGS	1
TECHNOLOGY DESCRIPTION	
Die Process	2 - 3
ANALYSIS RESULTS I	
Die Process and Design	4 - 6
ANALYSIS PROCEDURE	7
TABLES	
Overall Quality Evaluation	8
Die Material Analysis	9
Horizontal Dimensions	10
Vertical Dimensions	11

INTRODUCTION

This report describes a construction analysis of the Xilinx XC4036EX Field Programmable Gate Array (FPGA). One decapped device was received for the analysis. The device was date coded 9705.

MAJOR FINDINGS

Questionable Items:¹ None. We found no areas of reliability concern.

Special Features:

- Sub-micron gate lengths (0.45 micron N-channel and 0.5 micron P-channel).
- 5T SRAM (select-RAM) cells for programming.
- Reflowed (?) aluminum filled vias.

¹*These items present possible quality or reliability concerns. They should be discussed with the manufacturer to determine their possible impact on the intended application.*

TECHNOLOGY DESCRIPTION

Die Process and Design:

- The device was fabricated using a selective oxidation, N-well CMOS process in a Psubstrate. No epi was used.
- Passivation consisted of a layer of nitride over a layer of silicon-dioxide.
- Three levels of metal interconnect were used. Metal 3 and metal 2 consisted of aluminum with a titanium-nitride (TiN) cap and titanium (Ti) barrier. Metal 1 consisted of aluminum with a titanium-nitride (TiN) cap and barrier. A thin titanium (Ti) adhesion layer was used under metal 1. Aluminum filled vias were used under both metal 3 and metal 2 and tungsten (W) plugs were used for contacts under metal 1. A titanium nitride (TiN) layer was present under the plugs.
- Interlevel dielectrics consisted of three layers of glass. The first layer was quite thin. The second layer was an SOG subjected to an etchback for planarization. A thick third layer covered these.
- Pre-metal glass consisted of a layer of reflow glass over various densified oxides. Glass was reflowed prior to contact cuts only.
- A single layer of polycide (poly with tungsten silicide) was used to form all the gates on the die. Definition was by a dry etch of normal quality.
- Implanted N+ and P+ diffusions formed the sources/drains of the CMOS transistors. The process used oxide sidewall spacers that were left in place.
- Local oxide (LOCOS) isolation. No step was present in the oxide at the edge of the well, and no other signs of the use of P-wells was found.

<u>TECHNOLOGY DESCRIPTION</u> (continued)

 The memory cell array utilized a 5T SRAM cell design. Metal 3 was used to form the word lines. Metal 2 was used to form the bit lines and distribute GND and Vcc (via metal 1). Metal 1 provided cell interconnect. Poly was used to form all gates. Variations in the metal interconnect layout were observed.

ANALYSIS RESULTS I

Die Process:

Figures 1 - 32

Questionable Items:¹ None. As mentioned, we found no quality concerns whatsoever.

Special Features:

- Sub-micron gate lengths (0.45 micron N-channel and 0.5 micron P-channel).
- 5T SRAM (select-RAM) cells for programming.
- Reflowed (?) aluminum filled vias.

General items:

- Fabrication process: Devices were fabricated using a selective oxidation, N-well CMOS process in a P-substrate. No epi was used.
- Process implementation: Die layout was clean and efficient. Alignment was good at all levels. No damage or contamination was found.
- Die coat: No die coat was present.
- Overlay passivation: A layer of nitride over a layer of silicon-dioxide. Overlay integrity test indicated defect-free passivation. Edge seal was good.
- Metal interconnect employed three levels of metal. Metal 3 and metal 2 consisted of aluminum with a titanium-nitride (TiN) cap and titanium (Ti) barrier. Metal 1 consisted of aluminum with a titanium-nitride (TiN) cap and barrier on a thin

¹*These items present possible quality or reliability concerns. They should be discussed with the manufacturer to determine their possible impact on the intended application.*

ANALYSIS RESULTS I (continued)

titanium (Ti) adhesion layer. Aluminum filled vias were used under both metal 3 and metal 2, and tungsten (W) plugs were used for contacts under metal 1.

- Metal patterning: All three metal levels were patterned by a dry etch of normal quality.
- Metal defects: No voiding, notching, or neckdown was noted in the metal 3 or metal
 2. No silicon nodules were noted following removal of either metal layer. No problems were noted in any of the layers.
- Metal step coverage: Vias under metal 3 and metal 2 were completely surrounded by metal. Metal 1 used plugs at contacts. Metal 3 and metal 2 had virtually no thinning due to the use of the aluminum filled vias. No thinning was present in metal 1 because of the use of tungsten (W) plugs at contacts.
- Interlevel dielectrics consisted of three layers of glass. The first layer was a thin even thickness, not planarized in any way. The second layer was an SOG subjected to an etchback for planarization. The third covering layer was of even and substantial thickness, and in fact may have been a triple layer rather than a single homogeneous layer. No problems were noted.
- Pre-metal glass: A layer of reflow glass (BPSG) over various densified oxides was used under metal 1. Reflow was performed prior to contact cuts only. No problems were found.
- Vias and contacts: Via cuts were defined by a two-step process. Vias appeared to have been patterned using a controlled overetch to just penetrate the titanium nitride cap to the aluminum underneath. Contacts used an apparent single etch step, lined with the titanium-nitride barrier and then filled with tungsten. No problems were found.

ANALYSIS RESULTS I (continued)

- A single layer of polycide (poly and tungsten silicide) was used to form all gates on the die. Definition was by a dry-etch of normal quality.
- Standard implanted N+ and P+ diffusions formed the sources/drains of the CMOS transistors. The process used oxide sidewall spacers that were left in place. No problems were found.
- Local oxide (LOCOS) isolation was used. No step was present in the oxide at the well boundaries, nor did we find any other evidence of the use of P-wells.
- The memory cell array utilized a 5T SRAM cell design. Metal 3 was used to form the word lines. Metal 2 was used to form the bit lines and distribute GND and Vcc (via metal 1). Metal 1 provided cell interconnect. Poly was used to form all gates. Cell pitch was 8.7 x 9.5 microns. Process in the array appeared identical to the rest of the die.
- Redundancy fuses were not present on the die.

PROCEDURE

The devices were subjected to the following analysis procedures:

Internal optical inspection SEM of passivation Passivation integrity test Passivation removal SEM inspection of metal 3 Metal 3 removal and inspect barrier Delayer to metal 2 and inspect SEM inspection of metal 2 Metal 2 removal and inspect barrier Delayer to metal 1 and inspect Metal 1 removal and inspect barrier Delayer to silicon and inspect poly and die surface Die sectioning $(90^{\circ} \text{ for SEM})^*$ Die material analysis Measure horizontal dimensions Measure vertical dimensions

*Delineation of cross-sections is by silicon etch unless otherwise indicated.

OVERALL QUALITY EVALUATION: Overall Rating: Good

DETAIL OF EVALUATION

Die surface integrity:

Toolmarks (absence)	G
Particles (absence)	G
Contamination (absence)	G
Process defects	G
General workmanship	G
Passivation integrity	G
Metal definition	N
Metal integrity	G
Metal registration	N
Contact coverage	G
Contact registration	Ν

G = *Good*, *P* = *Poor*, *N* = *Normal*, *NP* = *Normal/Poor*

DIE MATERIAL ANALYSIS

Final passivation:	A layer of silicon-nitride over a layer of glass.
Metallization 3:*	Aluminum (Al) with a titanium-nitride (TiN) cap and titanium (Ti) barrier.
Metallization 2:*	Aluminum (Al) with a titanium-nitride (TiN) cap and titanium (Ti) barrier.
Metallization 1:*	Aluminum (Al) with a titanium-nitride (TiN) cap and barrier on a thin titanium (Ti) adhesion layer.
Silicide (poly):	Tungsten (W).

*No evidence of silicon or copper doping was found but amounts less than 0.5 wt. percent may have been present.

HORIZONTAL DIMENSIONS

Die size:	15.8 x 17.5 mm (620 x 690 mils)
Die area:	277 mm ² (427,800 mils ²)
Min pad size:	0.1 x 0.1 mm (3.8 x 3.8 mils)
Min pad window:	0.08 x 0.08 mm (3.25 x 3.25 mils)
Min pad space:	4 mils
Min metal 3 width:	0.8 micron
Min metal 3 space:	0.7 micron
Min metal 3 pitch:	1.5 micron
Min via size (M3-to-M2):	0.55 micron (diameter)
Min metal 2 width:	0.75 micron
Min metal 2 space:	0.6 micron
Min metal 2 pitch:	1.4 micron
Min via size (M2-to-M1):	0.5 micron (diameter)
Min metal 1 width:	0.65 micron
Min metal 1 space:	0.55 micron
Min metal 1 pitch:	1.2 micron
Min contact:	0.55 micron (diameter)
Min poly width:	0.45 micron
Min poly space:	0.55 micron
Min gate length [*] - (N-channel):	0.45 micron
- (P-channel):	0.5 micron
Cell pitch:	8.7 x 9.5 microns
Cell size:	83 microns ²

*Physical gate length.

VERTICAL DIMENSIONS

Die thickness:

Layers:

0.4 mm (15 mils)

Passivation 2: 0.6 micron 0.4 micron **Passivation 1:** Metal 3 - cap: 0.06 micron (approximate) - aluminum: 1.0 micron - barrier: 0.08 micron (approximate) Interlevel dielectric 2 - glass 3: 0.45 micron - glass 2: 0.6 micron - glass 1: 0.08 micron (approximate) Metal 2 - cap: 0.06 micron (approximate) 0.45 micron - aluminum: - barrier: 0.08 micron (approximate) Interlevel dielectric 1- glass 3: 0.5 micron 0.65 micron - glass 2: - glass 1: 0.09 micron (approximate) Metal 1 - cap: 0.05 micron (approximate) - aluminum: 0.5 micron - barrier: 0.1 micron Pre-metal dielectric: 0.3 micron (average) Oxide on poly: 0.11 micron Poly - silicide: 0.1 micron 0.15 micron - poly: Local oxide: 0.4 micron N+S/D: 0.22 micron P+S/D: 0.15 micron N-well: 3.75 microns

INDEX TO FIGURES

DIE LAYOUT AND IDENTIFICATION	Figures 1 - 3
PHYSICAL DIE STRUCTURES	Figures 4 - 28
COLOR DRAWING OF DIE STRUCTURE	Figure 22
SRAM CELL ARRAY	Figures 23 - 27
INPUT PROTECTION CIRCUIT	Figure 28
GENERAL CIRCUIT LAYOUT	Figure 28

Figure 1b. Portion of the whole die photograph of the Xilinx XC4036EX. Mag. 10x.

Figure 2. Markings from the die surface.

Figure 3. Optical views of the die corners. Mag. 80x.

Mag. 810x

Mag. 1600x

Mag. 3200x

Mag. 810x

Mag. 3200x

Figure 7. Perspective SEM views of the overlay passivation coverage. 60° .

Mag. 26,000x

Figure 8. SEM section views of metal 3 line profiles.

Mag. 3200x

Figure 9. Topological SEM views of metal 3 patterning. 0° .

Mag. 5000x

Mag. 20,000x

Mag. 26,000x

Mag. 26,000x

Figure 11. SEM section views of metal 2 line profiles.

Mag. 4000x

Figure 12. Topological SEM views of metal 2 patterning. 0° .

Mag. 26,000x, 60°

Mag. 26,000x

Figure 14. SEM section views of metal 1 line profiles.

Mag. 5000x

Figure 15. Topological SEM views of metal 1 patterning. 0° .

Figure 16. Perspective SEM views of metal 1 coverage and barrier. 60°.

metal 1-to-P+

metal 1-to-N+

metal 1-to-poly

Mag. 3200x

Mag. 6500x

Figure 18. Topological SEM views of poly patterning. 0° .

Figure 19. Perspective SEM views of poly coverage. 60° .

Figure 20. SEM section views of typical transistors. Mag. 52,000x.

Figure 21. SEM section view of a local oxide birdsbeak. Mag. 40,000x.

Orange = Nitride, Blue = Metal, Yellow = Oxide, Green = Poly,

Red = Diffusion, and Gray = Substrate

Figure 22. Color cross section drawing illustrating device structure.

metal 3

metal 2

Figure 23. SEM views of the SRAM cell. Mag. 3200x, 60° .

metal 1

poly

Figure 24. SEM views of the SRAM cell. Mag. 3200x, 60° .

metal 3

Figure 25. Topological SEM views of the SRAM cell. Mag. 3200x, 0° .

N+ S/D

N+ S/D

Mag. 300x

Mag. 800x

Figure 28. Optical views of the I/O structure and general circuitry.