

USB: Camera to Driver

John McMaster
JohnDMcMaster@gmail.com

What

● Goal: Camera + Windowz app =>
Linux app

● Why: PoC to create Linux drivers
● Small introduction to USB
● Capturing packets with Wireshark
● Replaying packets with uvusbrply
● Making a simple app

USB101

● Low to high speed packetized communications
● Many uses: hard drive, rocket launcher, etc
● Standard driver interfaces but not always used

● Ex: webcam standard is rarely used

USB 101: endpoints

● Communicate with “endpoints”
● Two endpoint types of interest:

● Control: small data transfer
● Bulk: large data transfer

● Some initialization stuff we can glaze over

USB 101: misc

● URB: Linux packet identifier
● USB version (ie 2 vs 3) only affects

PHY

Image source: http://www.hackolog.com/content-img-01/wiimote-used-for-usb-missile-launcher-auto-aiming-feature-
1.jpg

USB 101: sample control packet

● Transfer type: URB_CONTROL (0x02)
● Endpoint: 0x40, Direction: OUT
● URB setup

● bmRequestType: 0x40
● brequest: 1
● wValue: 0x0001
● wIndex: 15
● wLength: 0

USB 101: sample bulk packet

● Transfer type: URB_BULK (0x03)
● Endpoint: 0x82, Direction: IN
● URB length: 16384
● Device responds with 16384 or less

bytes

Wireshark: capturing USB

● Prereqs:
● Wireshark installed. I'm using 1.6.7
● Linux USB monitoring enabled (sudo

modprobe usbmon)
● A way to run the app (ie VM)
● USB port w/ device attached to it

● Demo Windows app + Wireshark

Introduction to pylibusb

● Python bindings for libusb
● Demo: small pylibusb program

Image source: http://en.wikipedia.org/wiki/Python_%28programming_language
%29#mediaviewer/File:Python_logo_and_wordmark.svg

usbrply

● Converts wireshark packet capture to code
● Python: we'll focus on this
● C (libusb)
● C (Linux kernel)

● Written in Python
● Demo: replaying our capture

Making a simple capture program

● Use pylibusb to take uvusbrply output and
capture camera data

● We must setup bulk capture ourself
● Writes some images to a file

Decoding the image

● How do we know that the image we captured
really works?

● Bayer pattern safe guess
● Demo!

CC-BY-SA, en:User:Cburnett: http://en.wikipedia.org/wiki/Bayer_filter#mediaviewer/File:Bayer_pattern_on_sensor.svg

Extras: understanding the output

● Why: learn to tweak settings
● Capture with setting at one value, then another
● Diff packet captures
● Camera may conform to SMIA
● Protocol may be obfuscated (ex: MU800)

Extras: frame sync

● Look at Linux drivers for clues on how others
do it

● Common sync algorithms:
● Fixed/magic pattern in frame
● Checksum in frame

● MU800: short bulk read

Extras: making a Linux module

● Minor function differences over libusb
● Copy another driver as a template
● Demo: MU800 driver overview

● I have an MD1800 driver but its not very polished

Image source: http://en.wikipedia.org/wiki/Linux#mediaviewer/File:Tux.svg

http://en.wikipedia.org/wiki/Linux#mediaviewer/File:Tux.svg

Thanks for listening!

● Questions? Interested?
● JohnDMcMaster@gmail.com

● All content CC BY unless otherwise noted
● usbrply:

https://github.com/JohnDMcMaster/usbrply/blob
/master/main.py

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

