
How to Intercept Encrypted
Messages On Android

About Me
● Natalie Silvanovich aka natashenka
● Google Project Zero Member
● Previously on Android Security Team

My (Mostly Failed) Goal
● Find remote vulnerabilities in Android

messaging clients
○ Facebook Messenger
○ Whatsapp
○ WeChat
○ Signal
○ Telegram

Why E2E Encrypted Messaging?
● Some messengers do not encrypt, or encrypt

from device to server and then server to
device
○ Server can sanitize messages
○ Exploiting a remote server blind is *hard*

● End-to-end encrypted messages cannot be
altered by server
○ Must be processed on device

Problem
● How to alter messages inside the encryption

wrapper?
○ Bugs that occur pre-encryption are rare
○ Ideally want to alter a message and have decryption

and signature verification succeed

POSSIBLE Strategies
● Implement the protocol
● Find existing tools
● Stubbing

Implement the protocol?
● Most messengers publish their encryption

protocols
○ Since we know our own key, we should be able to

replicate it

● But, but …
○ Documents are long and possibly inaccurate
○ A lot of work and very error prone

Use Existing Tools
● There’s a lot of authorized and

unauthorized apps that bring mobile
messengers to the desktop

● Looked at many of them, and they often use
different protocols (external APIs)

● E2E encryption often not implemented

STUBBING
Basic idea:

○ Find where message is encrypted
○ Insert code after the message has been serialized, but

before it has been signed or encrypted
○ Code sends message to remote server, where it can be

changed
○ Altered message gets sent to test device

Finding the Encryption Point
● Start by decompiling the application APK

using apktool
● Get smali files out
● Typically obfuscated
● Android applications contain a lot of

unused and rarely used code

.method public constructor
<init>(LX/8A2;LX/0Gl;LX/0Gl;LX/89x;LX/1q1;LX/1Xs;LX/0wj;LX/0Gl;LX/1pr;LX/0wQ;LX
/0oS;LX/0dK;LX/0wO;LX/0Gl;LX/1q5;LX/0wm;)V
 .locals 10
 invoke-direct {p0}, Ljava/lang/Object;-><init>()V
 iput-object v9, p0, LX/89y;->c:LX/8A2;
 iput-object v7, p0, LX/89y;->d:LX/0Gl;
 iput-object v6, p0, LX/89y;->e:LX/0Gl;
 iput-object v5, p0, LX/89y;->f:LX/89x;
 iput-object v4, p0, LX/89y;->g:LX/1q1;
 iput-object p4, p0, LX/89y;->h:LX/1Xs;
 iput-object v1, p0, LX/89y;->i:LX/0wj;
 iput-object v0, p0, LX/89y;->j:LX/0Gl;

Strategies
● Look for known libraries

○ libsignal
○ Java crypto

● Focus on natives
● Log entries

Known Libraries
● Most E2E encrypted messengers include

libsignal
○ Unfortunately, full feature set is not used
○ Putting in a stub where libsignal encrypts messages

(based on Signal source) did not work on most
messengers

Java Crypto Libs
Cheap trick:

○ Make a build of Android that has a stub in
javax.crypto.Mac

○ Make the stub send the digest only when it can access
a file in the sandbox of the app you’re testing

○ Will get a lot of stuff that isn’t messages, plus
sometimes messages

○ Works on about half of messengers

Java Crypto Libs
● Also possible to put log entry that outputs Java stack in

Java crypto libs
● Can help you find where the app is encrypting the message
● Relies on the app actually using Java crypto
● Apps often implement their own encryption (wrap a native

library), but usually use Java for signing
● Once output stacks in System.arraycopy when I was

desperate
● Can also search smali, but no guarantee stuff gets called

Natives (JNI)
● Java Native Interface calls cannot be

obfuscated (easily)
● Calls with ‘encrypt’ in the name are good

candidates for stub locations
○ Messaging encryption is usually native
○ Be careful to separate file encryption from network

encryption

● Made a script that outputs log entries for
every native call

JNI Question
In a Java application, can native code be run without a JNI
call?

No.

● JNI can start threads, etc, but native code always starts
with a JNI call in and Android Java application

Log Entries
● Some apps have a lot of helpful log entries

(and some don’t)
 const/4 v10, 0x0
 monitor-enter v4
 :try_start_0
 iget-object v0, v4, LX/8B3;->d:Ljavax/crypto/Mac;
 if-nez v0, :cond_10
 sget-object v1, LX/8B3;->a:Ljava/lang/Class;
 const-string v0, "Could not verify Salamander signature - no SHA256HMAC"
 invoke-static {v1, v0}, LX/00T;->b(Ljava/lang/Class;Ljava/lang/String;)V
 :try_end_0
 .catchall {:try_start_0 .. :try_end_0} :catchall_0

Log Entries
● Signature verification failure is a good

log entry to look for
● Remember, you can add your own log entries

More About Message Encryption
● Apps usually have more than one location

where they encrypt messages
○ Messages
○ Attachments
○ Typing/presence indicator
○ Notification content

● Usually need to add multiple stubs

Messages!

Bug
● One remote code execution vulnerability in

Telegram

Questions

natalie@natashenka.ca

@natashenka

mailto:natalie@natashenka.ca

