Inferences from Rossi traces

Kenneth M. Hanson and Jane Booker Los Alamos National Laboratory

This presentation available under http://www.lanl.gov/home/kmh/

July, 2000 - Revised 22/09/00

MaxEnt and Bayesian WS

Overview of presentation

- Goal assess uncertainty in alpha curves
- Rossi technique for recording time-dependent signals
- Uncertainties in reading Rossi traces \Rightarrow likelihood
- Model alpha as function of time, then calculate data
- Bayesian data analysis posterior provides inference about model parameters
- Markov Chain Monte Carlo technique display and quantify uncertainty distribution
- Uncertainties in alpha curve

Acknowledgements

- Rossi experts
 - Kent Croasdell, Layle Zongker, Rick Collingsworth, Tom Tunnel
- General discussions
 - Tom Gorman, Jamie Langenbrunner, Shane Reese, Greg Cunningham

Alpha - measure of criticality

- Assembly of radiographic, fissionable material can become critical, i.e. neutron fluxes can grow exponentially
- If y(t) is neutron flux as function of time, the "Rossi" α is measure of extent of criticality:

$$\alpha(t) = \frac{1}{y} \frac{dy}{dt} = \frac{d(\ln y)}{dt}$$

- Objective is to infer α(t) from measurements of "Rossi" traces, y(cos(t))
- Use of Bayesian analysis, coupled with MCMC technique, allows full assessment of uncertainties in inference, including effect of systematic uncertainties

Standard amplitude vs. time recording

- Objective is to accurately record an exponentially rising signal
- Standard technique is to photograph CRT screen
 - horizontal sweep linear in time
 - signal amplitude vertical
- CRT nonlinearities and errors in orientation lead to errors in measurement of amplitude vs. time

The Rossi technique

- Rossi technique photograph oscilloscope screen
 - horizontal sweep is driven sinusoidally in time
 - signal amplitude vertical
- Records rapidly increasing signal while keeping trace in middle of CRT, which minimizes nonlinearities

Amplitude $x = x_R \cos(2\pi f_R t + \phi_0)$

Reading a Rossi trace

- Technician reads points by centering cross hairs of a reticule on trace; computer records positions, $\{x_i, y_i\}$
- Points are read:
 - approximately evenly spaced along trace
 - otherwise arbitrary placement along curve, except at peaks

Uncertainties in Rossi readings

- Readings obtained by centering cross hairs on trace
- Uncertainties in location of trace
 - depend on width of trace and signal-to-noise ratio
 - perpendicular to trace (position along trace arbitrarily chosen)

Uncertainties in Rossi readings

- Near peaks, intensity varies because it depends on speed at which electron beam moves over CRT phosphor
- Uncertainties in placement
 - mainly in horizontal direction
 - larger than in regions where trace is more straight

July, 2000

MaxEnt and Bayesian WS

Cubic spline expansion of alpha curve

- Expand $\alpha(t)$ in terms of basis functions:

where $\alpha(t) = \sum_{k} a_{k} \phi \left[\frac{t - t_{k}}{\Delta t} \right]$

- a_k is the expansion coefficient,
- ϕ is a spline basis function,
- t_k is the position of the *k*th knot
- Δt is the knot spacing
- Use 15 evenly-space knots
 - spacing chosen on basis of limited bandwidth of signal *y*
 - two are outside data interval to avoid special end conditions
- Parameters a_k are to be determined

July, 2000

Modeling the Rossi data

- $-\alpha(t)$ represented as cubic spline
- measurement model predicts data
- include systematic effects of measurement system, y_0 and x_R

Likelihood model - uncertainties in Rossi data

- minus-log-likelihood, $p(\mathbf{d}|\mathbf{a})$, for measured point (x_{exp}, y_{exp}) :

$$\Delta \frac{\chi^2}{2} = \frac{(x_{\exp} - x'_{model})^2}{2\sigma_x^2} + \frac{(y_{\exp} - y'_{model})^2}{2\sigma_y^2}$$

where (x'_{model}, y'_{model}) is the model point closest to (x_{exp}, y_{exp})

July, 2000

MaxEnt and Bayesian WS

Likelihood model

- Potential problem with taking distance to nearest point on curve
 - points may be measured in a specific order
 - when curve is shifted, order
 of points may get mixed up;
 leads to discontinuities in Λ
- Potential remedy is to constrain reference points = on curve to maintain order of measured points

Cubic spline expansion

• Expand $\alpha(t)$ in terms of basis functions:

$$\alpha(t) = \sum_{k} a_{k} \, \phi \! \left[\frac{t - t_{k}}{\Delta t} \right]$$

where a_k is the expansion coefficient, ϕ is a spline basis function, t_k is the position of the *k*th knot, and Δt is the knot spacing

• Parameters a_k are to be determined

Bayesian analysis of an experiment

- The pdf describing uncertainties in model parameter vector **a**, called **posterior**:
 - $p(\mathbf{a}|\mathbf{d}) \sim p(\mathbf{d}|\mathbf{d}^*) p(\mathbf{a})$ (Bayes law) where **d** is vector of measurements, and $\mathbf{d}^*(\mathbf{a})$ is measurement vector predicted by model
 - p(d|d*) is likelihood, probability of measurements d given the values d* predicted by simulation of experiment
 - $p(\mathbf{a})$ is prior; summarizes previous knowledge of \mathbf{a}
 - "best" parameters estimated by
 - maximizing posterior (called MAP solution)
 - mean of posterior
 - uncertainties in **a** are fully characterized by $p(\mathbf{a}|\mathbf{d})$

Smoothness constraint

- Cubic splines tend to oscillate in some applications
- Smoothness of $\alpha(t)$ can be controlled by minimizing

$$\mathbf{S}(\boldsymbol{\alpha}) = T^3 \int \left| \frac{d^2 \boldsymbol{\alpha}}{dt^2} \right|^2 dt$$

where T is the interval; T^3 factor removes T dependence

- Smoothness can be incorporated in Bayesian context by setting prior on spline coefficients to

 log p(a) = λ S(α(a))
- Hyperparameter λ can be determined in Bayesian approach by maximizing $p(\lambda | \mathbf{d})$

• The full Bayesian posterior for spline coefficients in Rossi analysis is

$$-\log(p(\mathbf{a}|\mathbf{d})) = \frac{(y_0 - y_{0,\text{model}})^2}{2\sigma_y^2} + \sum \frac{(x_{\text{exp}} - x'_{\text{model}})^2}{2\sigma_x^2} + \frac{(y_{\text{exp}} - y'_{\text{model}})^2}{2\sigma_y^2} + \lambda S$$

where first term comes from baseline y_0 measurement, second from (x, y) measurements of Rossi trace, last from prior on smoothness

- All inferences about $\alpha(t)$ are based on this posterior
- Data d: $\{x_i, y_i\}$, points from Rossi trace; y_0, y baseline
- Parameters a: {a_k}, knot coefficients; y₀, y baseline;
 x_R, amplitude of Rossi sweep

Likelihood model

- Log-likelihood contributions:
 - sum over all measured
 - (x_{exp}, y_{exp}) points
 - measured baseline, y_0
- Model parameters:
 - Rossi frequency and t_0
 - $-y_0$, baseline for *y* amplitude ^{\$}
 - $-x_R$, *x* amplitude ^{\$}
 - y(t) modeled as cubic spline
 with equal node spacing,
 chosen on basis of bandwidth
 of signal
 \$systematic effects

July, 2000

Parameter uncertainties via MCMC

- Posterior $p(\mathbf{a}|\mathbf{d})$ provides full uncertainty distribution for \mathbf{a}
- Markov Chain Monte Carlo (MCMC) algorithm generates a random sequence of parameters that sample p(a|d)
 - results in plausible set of parameters {a}
 - variation in plausible set of **a** is representative of uncertainties
 - second moments of parameters can be used to estimate covariance matrix C
- MCMC advantages
 - can be applied to any pdf, not just Gaussians
 - automatic marginalization over nuisance variables
- MCMC disadvantage
 - potentially calculationally demanding

Generates sequence of random samples from an arbitrary probability density function

- Metropolis algorithm:
 - draw trial step from symmetric pdf, i.e., $T(\Delta a) = T(-\Delta a)$
 - accept or reject trial step
 - simple and generally applicable
 - relies only on calculation
 of target pdf for any a

MCMC - alpha uncertainty

- MCMC samples from posterior
 - plot shows several $\alpha(t)$ curves consistent with data
 - uncertainties in model
 visualized as variations in
 curves
- Smoothness parameter, $\lambda = 0.04$

MCMC - Alpha

- For MCMC sequence with 10⁵ samples, image shows accumulated MCMC curves in alpha domain
- Effectively shows PDF for uncertainty distribution in alpha, estimated from data
- However, does not show correlations between uncertainties at two different times, as do individual MCMC samples

MCMC - Alpha

- Interpreting accumulated alpha curve as a PDF, one can estimate \$\alpha(t)\$ in terms of
 - posterior mean
 - posterior max. (MAP estimate)
- Or characterize uncertainties
 - standard deviations
 - covariance matrix (correlations)
 - credible intervals (envelope)
- Plot on right shows
 - posterior mean
 - posterior mean +/- standard dev.
 (one standard dev. envelope)

Effect of smoothing prior

Splines' tendency to oscillate is controlled by smoothing prior

 $\lambda = 0.004$ (minimal prior)

Time

 $\lambda = 0.4$ (best value)

Alpha

MaxEnt and Bayesian WS

Choice of the strength of smoothing prior

- Hyperparameter λ controls strength of smoothing prior
- chosen by maximizing $p(\lambda | \mathbf{d})$, which is proportional to the evidence $p(\mathbf{d} | \lambda) = \int p(\mathbf{a}) p(\mathbf{d} | \mathbf{a}, \lambda) d\mathbf{a}$

(probability of data, given model and λ)

 integral often approximated as peak value of integrand times its volume, given by the determinant of the covariance matrix

MCMC - Autocorrelation and Efficiency

- In MCMC sequence, subsequent parameter values are usually correlated
- Degree of correlation quantified by autocorrelation function:

$$\rho(l) = \frac{1}{N} \sum_{i=1}^{N} y(i) y(i-l)$$

where y(x) is the sequence and l is lag

- For Markov chain, expect exponential $\rho(l) = \exp\left[-\frac{|l|}{2}\right]$
- Sampling efficiency is

$$\varepsilon = [1 + 2\sum_{l=1}^{\infty} \rho(l)]^{-1} = \frac{1}{1 + 2\lambda}$$

- For sequence shown, $\lambda = 170$, $\varepsilon = 0.003$

MCMC - Correlations among Uncertainties

- MCMC sequence can quantify correlations between uncertainties in various parameters
- Covariance between parameters: $\sum_{n=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}$

$$[C]_{jk} = \frac{1}{N} \sum_{i=1}^{N} a_{j}(i) a_{k}(i)$$

where $a_j(i)$ is the value of the *j*th parameter at the *i*th sequence step

MCMC - Issues

- Choice of PDF for trial steps in parameters
 - desire improved efficiency in calculation
 - would like to incorporate correlations in posterior
- Burn in
 - may need to run MCMC for awhile to get in operating region of posterior distribution
- Convergence of sequence to true PDF
 - validity of estimated properties of parameters (covariance)
 - accuracy of same

Conclusions

- Bayesian analysis is a useful way to analyze experimental data in terms of models
- MCMC provides good tool for exploring the posterior and hence in drawing inferences about model

Bibliography

- "Time scale measurements by the Rossi method," J. D. Orndoff et al., Los Alamos Report LA-744 (1949)
- "Enriched uranium-hydride critical assemblies," G. A. Linenberger et al., *Nucl. Sci. Eng.* 7, 44-57 (1960)
- "Recovery of Time-Varying Exponential Signals and Other Rapidly Developing Functions," C. W. Franklin, *EGG Report 1183-2233* (Santa Barbara, 1970)
- "Data Analysis: A Bayesian Tutorial," D. S. Sivia (Oxford, 1996)
- *"Markov Chain Monte Carlo in Practice,"* W. R. Gilks et al., (Chapman and Hall, 1996)
- "Posterior sampling with improved efficiency," K. M. Hanson and G. S. Cunningham, *Proc. SPIE* 3338, 371-382 (1998)